
ParallelChain Mainnet Whitepaper
Adam Version

Alice Lim∗ and the ParallelChain Lab Team

January 18, 2023

1 Introduction

This Whitepaper describes the ParallelChain Mainnet Protocol. The Protocol specifies how the differ-
ent components of the ParallelChain Mainnet blockchain operates. In doing so, it serves three purposes:

• It lets users know exactly what to expect when they interact with the ParallelChain Mainnet:
no surprises or broken promises.

• It helps implementors of ParallelChain software components ensure that their work interoperates
smoothly with other existing components.

• It records changes to The Protocol over time, helping network updates proceed without unfore-
seen hitches.

Besides specifying The Protocol, this living document also provides justification for The Protocol’s
more esoteric, less obvious aspects. Of course, ‘obvious’ is subjective, and what is obvious to one person
may not be so obvious to another. With this in mind, this document strives to strike a healthy balance
between describing protocol behavior as succinctly as possible, which implementors should prefer, and
narratively walking through the authors’ design thinking, which other readers, e.g., token holders, the
press, and teams or individuals working on derivative and related work should prefer. The goal of this
project is not only to build a good trustless, distributed compute and storage platform, but also to
develop the programming community’s collective competency in building secure, maintainable, and
useful distributed systems.

1.1 Relation with HotStuff-rs

HotStuff-rs is a Rust Programming Language implementation of the HotStuff consensus protocol,
also created by the authors of this paper. ParallelChain Mainnet uses HotStuff-rs to replicate its
state machine across a large set of machines around the globe. Membership in this ’Validator Set’ is
determined by the staking rules specified in this document. A combination of clever tokenomics and
HotStuff’s logically provable Byzantine Fault Tolerance ensures that the protocol is executed honestly
by the Validator Set, and that committed Blocks remain committed.

This document makes frequent reference to concepts defined in HotStuff-rs (paper coming soon).
To keep this document as self-contained as possible, the referenced HotStuff-rs concepts are listed in
Appendix A.

2 Message Types

This section specifies types that Protocol implementations share across the network in messages. All
types are serialized using near/borsh.

∗Distinguished Engineer at ParallelChain Lab.

1

https://github.com/near/borsh


2.1 Cryptographic Primitives

• Public Address ([u8; 32]) Ed25519 Public Key.

• Private Key ([u8; 32]): Ed25519 Private Key.

• Signature ([u8; 64]): Ed25519 Signature.

• Cryptographic Hash ([u8; 32]): SHA256 hashes.

• Binary Merkle Trees and Binary Merkle Proofs: as generated by antouhou/rs-merkle.

• Base-16 Modified Merkle Patricia Tries (MPT) and MPT Proofs: as generated by paritytech/trie.

• Bloom Filters (Vec<u8>): as generated by paritytech/parity-common/ethbloom.

2.2 Block Header

A structure with fields:

• Hash (CryptoHash): the SHA256 Hash over (Block Height ++ Justify ++ Data Hash).

• Height (u64): the number of Justify-links between this Block and the Genesis Block. 0 for the
Genesis Block.

• Justify (QuorumCertificate): a QuorumCertificate that points to the Block’s parent.

• Data Hash (CryptoHash): the SHA256 Hash over (Chain ID, Proposer, Timestamp, Base Fee
Per Gas, Transactions Hash, Receipts Hash, State Hash, Logs Bloom).

• Chain ID (u64): a number unique to a particular ParallelChain Mainnet-based blockchain. This
prevents, for example, Blocks from one chain from being published in another chain as evidence
of malfeasance.

• Proposer (PublicAddress): the Public Address of the Validator that is the Leader of the View
this Block was proposed in.

• Timestamp (u64): a Unix timestamp. Same as Ethereum, this must be less than 900 seconds
greater than the parent Block’s timestamp. Additionally, Validators should reject Blocks with
Timestamps lower than its local timestamp.

• Base Fee Per Gas (u64): The (inclusive) minimum number of Grays that a Transaction included
in this Block must pay for every Gas used. This value (BaseFeePerGasn) in the Block with
height n is determined by the formula:

BaseFeePerGasn = BaseFeen−1 ∗ (1 +
GasConsumedn−1 − TargetGasUsed

TargetGasUsed
∗ 1/8)

• Transactions Hash (CryptoHash): the Binary Merkle Tree root hash over the Block’s Transac-
tions.

• Receipts Hash (CryptoHash): the Binary Merkle Tree root hash over the Block’s Receipts.

• State Hash (CryptoHash): the SHA256 root hash of the blockchain’s World State Merkle Patricia
Trie (MPT) after executing all of this Block’s Transactions.

• Logs Bloom (Vec<u8>): the 256-byte Block-level Bloom Filter union of all the Bloom Filters of
each Log topic from the Block’s Receipts.

2

https://github.com/antouhou/rs-merkle
https://github.com/paritytech/trie
https://github.com/paritytech/parity-common/tree/master/ethbloom


2.3 Block

A structure with fields:

• Block Header (BlockHeader).

• Transactions (Vec<Transaction>): a dynamically-sized list of Transactions.

• Receipts (Vec<Receipt>): a dynamically-sized list of Receipts. If a Block contains a Transaction,
it must also contain its Receipt. Receipts appear in the order of their Transactions.

The serialized size of a Block must not exceed BlockSizeLimit bytes.

2.4 Transaction

A structure with fields:

• Command (TransactionCommand): a Transaction Command Enum (2.4.1), specifying what the
Transaction ’should do’.

• Origin (PublicAddress): the address of the External Account on the sending end of this Trans-
action. For Next Epoch Transactions, this must be all zeros.

• Hash (CryptoHash): the SHA256 hash over Signature.

• Signature (Signature): the Ed25519 Signature over (Command, Origin, Nonce, Gas Limit, Max
Base Fee per Gas, Priority Per Gas) using the Private Key corresponding to Origin.

• Nonce (u64): the number of Transactions on chain with the same Origin that are on chain before
this Transaction, unless the Transaction is a Next Epoch Transaction, in which case its value
must be 0.

• Gas Limit (u64): the amount of Gas that the network should expend executing the Transaction.

• Max Base Fee per Gas (u64): The number of Grays the Origin Account is willing to pay the
network for the work of processing this Transaction.

• Priority Fee per Gas (u64): the number of Grays the Origin Account is will pay the Proposer for
including this Transaction in a Block.

2.4.1 Transaction Command

An enum with the following variants (operations) and fields (input):

Operation Input

Account Transactions

Transfer
• Target (PublicAddress): the address of the Account receiving the transfer.

• Amount (u64): the number of Grays to transfer from Transaction.Origin to
Target.

3



Deploy
• Contract (Vec<u8>): a vector of bytes satisfying the Contract Binary Interface
(5).

• CBI Version (u32): the version of the CBI that Contract targets. Must be 0
(currently the only version of the CBI).

• Init Arguments (Option<Vec<Vec<u8>>>): if Some, the Contract’s init guest
function will be called, and this value (whole value, not only the value inside
the Option) will be made available through the arguments host function.

• Amount (Option<u64>): the number of Grays to transfer from Transac-
tion.Origin to the Contract Account created by this Transaction before its init
function is (potentially) called.

Call
• Target (PublicAddress): the address of the Contract Account that will be
called.

• Method (Vec<u8>): the value to be made available through the method host
function inside the Contract call.

• Arguments (Option<Vec<Vec<u8>>>): the value to be made available through
the arguments host function inside the Contract call.

• Amount (Option<u64>): the number of Grays to transfer from Transac-
tion.Origin to Target before the Contract Call.

Network Transactions

NextEpoch None.

RegisterPool
• Commission Rate (u8): the percentage ([0, 100]) of the Epoch rewards of a non-
own Stake in the Pool that will be received by its Operator, which will be
Transaction.Origin.

ModifyPool
• New Commission Rate (u8): the new percentage ([0, 100]) of the Epoch rewards
of a non-own Stake in the Pool that will be received by its Operator, Transac-
tion.Origin.

UnregisterPool None.

RegisterStake
• Operator (PublicAddress): the address of the Operator of the staking Pool
that the created Stake will target.

• Balance (u64): the number of Grays that will be locked up in the created Stake.

ReleaseStake
• Operator (PublicAddress): the address of the Operator of the Pool that the
stake to be released targets.

2.5 Receipt

A structure with fields:

4



• Gas Used (u32): the number of units of gas expended in executing the Transaction. The sum of
a Block’s Transactions’ Gas Used must not exceed TargetGasUsed× 2.

• Logs (Vec<Log>): the log emitted during a Contract Call, in the order of emission.

• Return Value (Vec<u8>): the return value of a Contract Call.

• Exit Code (ReceiptExitCode).

2.5.1 Receipt Exit Code

An enum with the following variants (code):

Code Description

OperationSuccessful The Transaction successfully accomplished everything that it could have
been expected to do.

General Errors

OperationFailed The Transaction failed to accomplish the primary operation that Trans-
actions of its kind are expected to accomplish.

GasExhausted The Gas Limit was exceeded by a dynamically-costed activity in a
dynamic-cost Transaction.

2.5.2 Log

A structure with fields:

• Topic (Vec<u8>).

• Value (Vec<u8>).

3 World State

The World State is a singleton mapping between Account addresses and Account states. It is stored
in a Base-16 Modified Merkle Patricia Trie (MPT). The 32-bytes root hash of this MPT after the
execution of all Transactions in a Block is included in the Block Header’s State Hash field.

3.1 Account

An Account’s state is composed of various fields, each stored at key address ++ a prefix specified in
the first column of the table below:

Prefix Field Type Description

0 Nonce u64 For an External Account, the number of Transactions origi-
nating from this Account so far on chain. Empty for a Con-
tract Account.

1 Balance u64 The number of Grays owned by the Account.

2 Contract Vec<u8> for a Contract Account, the Contract’s WASM Bytecode.
Empty for an External Account.

3 CBI Version u32 for a Contract Account, the version of the Contract ABI that
the Contract’s Code expects. Empty for an External Account.

4 Storage Hash CryptoHash for a Contract Account, the root hash of its Storage Trie.
Empty for an External Account.

5



Each Contract Account is associated with an MPT called a Storage Trie. A Contract Account’s
Storage Trie is accessible from inside Contract Code and through Standard HTTP API endpoints as a
set of key-value pairs. Keys and values can be any arbitrary bit-sequence. Though publicly readable, a
Contract’s Storage can only be mutated from inside Call Transactions, and then only from the specific
Contract’s Code.

3.1.1 Network Account Storage

Some of the state that ParallelChain Mainnet maintains is of network-wide significance, instead of
only being relevant to a single Account. This state is maintained in the Storage Trie of an identified
Account called the Network Account, which resides at address 000. . . This Account is not associated
with Ed25519 material. The network-significant data that the Network Account stores is composed of
various fields, each stored in its Storage Trie under a 1-byte prefix specified below for each field before
its type.

Prefix Field [(shorthand)] Type

0 Previous Validator Pools (pvp) Vec<PoolSnapshot>

1 Validator Pools (vp) Vec<PoolSnapshot>

2 Next Validator Pools (nvp) BinaryHeap<Pool, MaxValidatorSetSize>

3 Next Validator Pools Length (nvp len) u16

4 Pools Operator → Pool

5 Stakes (Operator, Owner) -> Stake

6 Current Epoch u64

Pool Snapshot

• Operator (OperatorAddress).

• Total Balance (u64).

• Commission Rate (u8).

• Stakes ([StakeSnapshot; MaxStakesPerPool]).

Stake Snapshot

• Operator (OperatorAddress).

• Owner (PublicAddress).

• Balance (u64).

• Locked (bool).

• Included (bool).

Pool (dict type)

• Operator (0; OperatorAddress).

• Balance (1; u64): (Total Balance).

• Commission Rate (2; u8).

• Stakes (3; BinaryHeap<Stake, MaxStakesPerPool>).

• Stakes Length (4; u16).

6



Stake (dict type)

• Operator (0; OperatorAddress).

• Owner (1; PublicAddress).

• Balance (2; u64).

• Locked (3; bool).

• Included (4; bool).

4 Transactions

At the most abstract level, ParallelChain Mainnet is a replicated state machine with a state transition
function of kind (WorldState,Block) → WorldState, where Block here can be seen as a list of
Transactions. A mechanism called Gas Billing remunerates Staking Pools and the network as a whole
for the work that they do in maintaining this replicated state machine.

The most substantive parts of this section specify this replicated state machine by separately
describing the execution of all of the different possible Commands. But, though Transactions with
different Command Operations do broadly different work, there are a handful essential processing
steps (most importantly, Gas Billing) that all Transactions must go through. These are specified in
4.1.

Excluding Next Epoch Transactions, which are discussed in 4.4, and in the normal case where the
Gas Limit is sufficient, the execution of a Transaction proceeds through a fixed sequence of steps, or
’Phases’: Tentative Charge→Work→ Charge. The Work phases of Transactions of each possible
Command are discussed in 4.2 and 4.3.

Exceeding Gas Limit in the Work Phase causes all World State sets done in the Work Phase to
be reverted, exit code to be set to GasExhausted, and execution to jump immediately to the Charge
Phase.

In the following sequence flows, we use a well-defined syntax of steps. Executing each step causes
specified side effects, and costs an unambiguous amount of gas. This is imperative if the network’s
state machine is to be replicated across multiple machines each potentially running different imple-
mentations:

Syntax Meaning

[let] var ← expr A variable assignment. var is either:
• A global variable, or

• If accompanied with let, a variable local to the procedure, or

• A key in the World State, denoted in any of the various ways
described in for next piece of syntax.

dict[key][.field] A World State access. If on the left-hand-side of a ← a get, if on the
right-hand-side, a set. Here, dict can be ws, ns, of one of the ’dictionary
types’ listed in 3.1.1, in which case the trailing .field specifies the field
being accessed.

In general, this statement costs some CostStateSet or CostStateGet,
and with the provisions for warm gets and Contracts as specified in 6.1.1.
The exception is in the Work Steps of Network Transactions, where all
gets are charged warm.

7



dict.contains(expr) Checks whether a key is set to a value (i.e., is not ∅) in the World State.
Evaluates into a bool.

Some steps check for the existence of a key by checking if its value is
̸= ∅ instead of using .contains. This is to save gas costs in cases where
the value is also needed at a later step.

Costs CostStateContains as specified in 6.1.1.

abort Causes all World State sets in the Work Phase to be reverted, exit code
to be set to GasExhausted, and execution to jump immediately to the
Charge Phase.

return Receipt{...} Ends execution and causes the specified Receipt to be included in the
Block.

Instantiatever(contract) Instantiate the contract, as specified in 5.
Costs InstantiateV er,Cold in the Deploy Work Step, and

InstantiateV er,Warm in the Call Work Step, as specified in 6.1.2.

Callver(guest function) Call a guest function in a Contract, updating logs and return value
and increasing gas used as Opcodes are executed and as host functions
are called as specified in 5. Evaluates to the Return Value of the Call.

Causes execution to jump to On Gas Exhausted when Gas Limit is
exceeded as usual, and causes an abort when any other trap is raised.

The following global variables are used in the following sequence flows. These are initialized to a
starting value at the beginning of a Transaction’s Execution, and may be read or assigned to by steps:

• base fee per gas (u32) and proposer (PublicAddress) the corresponding fields in the Header
of the Block that the Transaction is part of.

• gas used (u64): initialized to TransactionBaseCost(txn), and increased along with the execution
of each step by its gas cost. It does not matter whether this variable is increased before, or after
the execution of its corresponding step.

• exit code (ExitCode): initialized to OperationSuccessful.

• logs (Vec<Log>): initialized to a an empty vector.

• return value (Vec<u8>): initialized to an empty vector.

• ws: the World State.

• ns: Network Account Storage.

In addition, the Work Phase of every Transaction Operation has access to the fields of its Com-
mand’s Input. These are re-listed in the beginning of each Work Phase sequence flow after ”Data:”.

4.1 Common Phases

4.1.1 Tentative Charge

Algorithm 1: Tentative Charge Work Phase

Data: Transaction{origin, nonce, gas limit, priority fee per gas}
1 if ws[origin].nonce ̸= nonce then
2 abort
3 if gas limit > ws[origin].balance then
4 abort
5 ws[origin].balance←

ws[origin].balance− gas limit× (base fee per gas+ priority fee per gas);

8



4.1.2 Charge

Algorithm 2: Charge Step Phase

Data: Transaction{origin, gas limit, priority fee per gas}
1 ws[origin].balance←

ws[origin].balance+ (gas limit− gas used)× (base fee per gas+ priority fee per gas);
2 ws[Treasury].balance←

ws[Treasury].balance+ TreasuryCutOfBaseFee× gas used× base fee per gas;
3 ws[proposer].balance← ws[proposer].balance+ gas used× priority fee per gas;
4 ws[origin].nonce← ws[origin].nonce+ 1;
5 return Receipt{gas used, logs, return value, exit code};

4.2 Account Transactions

4.2.1 Transfer

Algorithm 3: Transfer Work Phase

Data: Transaction{origin}, Input{target, amount}
1 if ws[origin].balance < amount then
2 abort
3 ws[origin].balance←WS[origin].balance− amount;
4 ws[target].balance←WS[target].balance+ amount;

4.2.2 Deploy

Algorithm 4: Deploy Work Phase

Data: Transaction{origin, none}, Input{contract, cbi version, init arguments, amount}
1 let contract addr ← sha256((origin, nonce));
2 if let Some(amount)← amount then
3 if ws[origin].balance < amount then
4 abort
5 ws[origin].balance←WS[origin].balance− amount;
6 ws[contract addr].balance←WS[target].balance+ amount;

7 if let Ok(instance)← Instantiatecbi version(contract) then
8 ws[contract addr].contract← contract;
9 ws[contract addr].cbi version← cbi version;

10 if let Some(args)← init arguments then
11 Callcbi version(instance.init);

12 else
13 abort;

9



4.2.3 Call

Algorithm 5: Call Work Phase

Data: Transaction{origin}, Input{target,method, arguments, amount}
1 if let Some(amount)← amount then
2 if ws[origin].balance < amount then
3 abort
4 ws[origin].balance←WS[origin].balance− amount;
5 ws[target].balance←WS[target].balance+ amount;

6 let contract← ws[target].contract;
7 if Contract ̸= None then
8 let cbi version←WS[target].cbi version;
9 let Ok(instance)← Instantiatecbi version(contract);

10 Callcbi version(instance.action);

11 else
12 abort

4.3 Network Transactions

4.3.1 Register Pool

Algorithm 6: Register Pool Work Phase

Data: Transaction{operator : origin}, Input{operator, commission rate}
1 if pools.contains((operator, 00u8)) then
2 abort;
3 pools[operator].operator ← operator;
4 pools[operator].balance← balance;
5 pools[operator].stakes length← 0;
6 pools[operator].commission rate← commission rate;
7 nvp.insert then extract((operator, 0))

4.3.2 Modify Pool

Algorithm 7: Modify Pool Work Phase

Data: Transaction{operator : origin}, Input{new commission rate}
1 if !pools.contains((operator, 00u8)) then
2 abort;
3 pools[operator].commission rate← new commission rate;

10



4.3.3 Release Pool

Algorithm 8: Release Pool Work Phase

Data: Transaction{operator : origin}
1 let stakes len← pools[operator].stakes len;
2 if stakes len == ∅ then
3 abort;
4 for let i← 0 to stakes len do
5 let (owner, stake balance)← pools[operator].stakes[i];
6 if !stakes[(operator, owner)].locked then
7 stakes[(operator, owner)]← ∅

ws[owner].balance← ws[owner].balance+ stake balance;

8 else
9 stakes[(operator, owner)].included← ∅;

10 end
11 nvp.delete(operator);
12 pools[operator]← ∅;

4.3.4 Register Stake

Algorithm 9: Register Stake Work Phase

Data: Transaction{owner : origin}, Input{operator, balance}
1 if stakes.contains((operator, owner, 00u8)) then
2 abort;
3 if ws[owner].balance < balance then
4 abort;
5 ws[origin].balance← ws[origin].balance− balance;
6 if let pool balance← pools[operator].balance and pool balance ̸= ∅ then
7 stakes[(operator, owner)]← { operator, owner, balance, false, true };
8 if let Ok(replaced stake balance) = pool.stakes.insert then extract((operator, owner))

then
9 new pool balance← pool balance+ (replaced stake balance− balance)

nvp.insert then extract or change balance(operator, new pool balance);

10 else
11 abort;

12 else
13 abort;

11



4.3.5 Release Stake

Algorithm 10: Release Stake Work Phase

Data: Transaction{owner : origin}, Input{operator}
1 let stake included← stakes[(owner, operator)].included;
2 if stake included ̸= ∅ then
3 let stake locked← stakes[(owner, operator)].locked;
4 if stake included then
5 let pool← pools[operator];
6 let Ok(removed stake balance)← pool.stakes.delete(owner);
7 if !stake locked then
8 stakes[(operator, owner)]← ∅;
9 ws[owner].balance← ws[owner].balance+ removed stake balance;

10 else
11 stakes[(operator, owner)].included← false;

12 else
13 if stake locked then
14 abort
15 else
16 stakes[(operator, owner)]← ∅;
17 else
18 abort

4.3.6 Publish Evidence

Coming Soon.

4.4 Next Epoch

Coming Soon.

4.5 Binary Heap

Polymorphic Methods:

• heap.insert and extract(entity: Entity::Key) → Result<Option<u64>, ()>: u64 is the
replaced entity’s balance.

• heap.delete(key: Entity::Key) → Result<u64, ()>: u64 is the deleted entity’s balance.

• heap.change balance(key: Entity::Key, new key: Entity::Key.

Other Methods:

• nvp.insert then extract or change balance(pool: Pool::Key, balance change: u64).

5 Contracts

Contracts are code that are deployed into Contract Accounts. They can modify their Account’s Storage
Tries and control their balance.

In order to be deployed, Contract code needs to satisfy the version of the ParallelChain Contract
Binary Interface (CBI) specified in the Deploy Input of the Transaction which deployed it.

Version 0.0 is the current version of the CBI, and specifies that Contracts:

• Must be valid WebAssembly modules as described in the WebAssembly 2.0 Specification.

• Must not import any function besides those specified in 5.1 (they may import less).

• Must not contain any Opcode listed in 5.4.

12

https://webassembly.github.io/spec/core/intro/overview.html#semantic-phases


Additionally, to be callable using a Call Transaction (most Contracts will want this), they must
export the action and alloc methods specified in 5.2.

5.1 Host Functions

5.1.1 Account State Accessors

set(key ptr: u32, key len: u32, value ptr: u32, value len: u32)

Sets a key to a value in the current Contract Account’s Storage. Calling this function inside a View
Call causes a panic.

fn get(key ptr: u32, key len: u32, value ptr ptr: u32) -> i64

Gets the value corresponding to a key in the current Contract Account’s Storage.

fn balance(balance ptr ptr: u32) -> u64

5.1.2 Block Field Getters

fn block height(height ptr ptr: u32) -> u64

Gets the Height of the Block which the Transaction at the start of the current Call Chain is included
in. Calling this function inside a View Call causes a panic.

fn block timestamp(timestamp ptr ptr: u32) -> u64

Gets the Timestamp of the Block which the Transaction at the start of the current Call Chain is
included in. Calling this function inside a View Call causes a panic.

fn prev block hash(hash ptr ptr: u32) -> u32

Gets the Hash of the Parent of the Block which the Transaction at the start of the current Call Chain
is included in. Calling this function inside a View Call causes a panic.

5.1.3 Call Context Getters

fn calling account(address ptr ptr: u32) -> u32

Gets the Address of the Account that triggered the current Call. This could either be an External
Account (if the Call is directly triggered by a Call Transaction), or a Contract Account (if the Call is
an Internal Call). Calling this function in a View Call causes a panic.

fn current account(address ptr ptr: u32) -> u32

Gets the Address of the current Account.

fn method(method ptr ptr: u32) -> u32

Gets the Method of the current Call. If the Call is directly triggered by a Call Transaction, this is the
Method field of the Transaction’s Command Input. If it is an Internal Call, this is the method passed
into call action or call view. If it is an Init Call in a Deploy Transaction, this is an empty vector.

fn arguments(arguments ptr ptr: u32) -> u32

Gets the Arguments of the current Call. If the Call is directly triggered by a Call Transaction, this is
the Arguments field of the Transaction’s Command Input. If it is an Internal Call, this is the arguments
passed into call action or call view. If it is an Init Call in a Deploy Transaction, this is an empty
vector.

13



fn amount(amount ptr ptr: u32) -> u64

Gets the number of Grays transferred into the current Account by the current Call.

fn in internal call() -> i32

Returns whether the current Call is an Internal Call.

fn transaction hash(hash ptr ptr: u32) -> u32

Get the Hash of the Transaction at the start of the current Call Chain.

fn prev block hash(hash ptr ptr: u32) -> u32

Get the Hash field of the previous Block. Calling this function in a View Call causes a panic.

5.1.4 Internal Call Triggers

fn call action(address ptr: u32, method ptr: u32, method len: u32, arguments ptr: u32,

arguments len: u32, amount: u64, return val ptr ptr: u32) -> u32

Triggers an Action Call targeting the specified Contract Account, passing in the provided method and
arguments and Transferring the specified number of Grays. Then, returns the Call’s return value, if
any.

fn call view(address ptr: u32, method ptr: u32, method len: u32, arguments ptr: u32, arguments len:

u32, return val ptr ptr: u32) -> u32

Triggers a View Call targeting the specified Contract Account, passing in the provided methods and
arguments. Then, returns the Call’s return value, if any.

fn transfer(address ptr: u32, amount: u64)

Transfers the specified number of Grays to a specified Address, or the current Account’s entire Balance,
if it is smaller than the specified number.

5.1.5 Logging

log(log ptr: u32, log len: u32)

Add a Log to the current Transaction’s Receipt.

5.1.6 Cryptographic Operations

fn sha256(input ptr: *const u8, input len: u32, digest ptr ptr: *const u32)

Computes the SHA256 digest of arbitrary input.

fn keccak256(input ptr: u32, input len: u32, digest ptr ptr: u32) -> u32

Computes the Keccak256 digest of arbitrary input.

fn ripemd(input ptr: u32, input len: u32, digest ptr ptr: u32) -> u32

Computes the RIPEMD160 digest of arbitrary input.

fn verify ed25519 signature(msg ptr: u32, msg len: u32, signature ptr: u32, address ptr:

u32) -> i32

Returns whether an Ed25519 signature was produced by a specified by a specified address over some
specified message.

14



5.2 Guest Functions

5.2.1 Call Entrypoints

fn init()

fn action()

fn view()

5.2.2 Memory Allocation

fn alloc(len: u32) -> u32

Allocates a contiguous segment in the Contract’s Memory, returning the offset to it.

15



5.3 Opcode Gas Metering

Opcode Family Opcode Name Gas Cost

Constants
I32Const 0

I64Const 0

Type parameteric
operators

Drop 2

Select 3

Flow control

Nop, Unreachable,
Else, Loop, If

0

Br, BrTable, Call,
CallIndirect, Return

2

BrIf 3

Registers GlobalGet, GlobalSet,
LocalGet, LocalSet

3

Reference Types RefIsNull, RefFunc,
RefNull, ReturnCall, ReturnCallIndirect

2

Exception Handling CatchAll, Throw, Rethrow, Delegate 2

Bulk Memory Operations

ElemDrop, DataDrop, 1

TableInit 2

MemoryCopy, MemoryFill,
TableCopy, TableFill

3

Memory Operations

I32Load, I64Load,
I32Store, I64Store,

I32Store8, I32Store16,
I32Load8S, I32Load8U,
I32Load16S, I32Load16U,
I64Load8S, I64Load8U,
I64Load16S, I64Load16U,
I64Load32S, I64Load32U,

I64Store8, I64Store16, I64Store32

3

32 and 64-bit
Integer Arithmetic Operations

I32Add, I32Sub,
I64Add, I64Sub,

I64LtS, I64LtU, I64GtS,
I32Eq, I32Ne, I32LtS,

I64GtU, I64LeS, I64LeU,
I64GeS, I64GeU, I32Eqz,

I32LtU, I32GtS, I32GtU, I32LeS,
I32LeU, I32GeS, I32GeU, I64Eqz,
I64Eq, I64Ne, I32And, I32Or,
I32Xor, I64And, I64Or, I64Xor

1

I32Shl, I32ShrU, I32ShrS,
I32Rotl, I32Rotr, I64Shl,

I64ShrU, I64ShrS, I64Rotl, I64Rotr
2

I32Mul, I64Mul 3

I32DivS, I32DivU, I32RemS, I32RemU,
I64DivS, I64DivU, I64RemS, I64RemU

80

I32Clz, I64Clz 105

Type Casting
and Truncation Operations

I32WrapI64, I32Extend8S, I32Extend16S,
I64ExtendI32S, I64ExtendI32U, I64Extend8S,

I64Extend16S, I64Extend32S
3

16



5.4 Disallowed Opcodes

Disallowed
Opcode Family

Opcode
Subgroup Examples

Floating
Point Operations

F32x F32Eq, F32Lt, F32Const
F64x F64Eq, F64Lt, F64Const

Casting/Truncation
F32x4ConvertI32x4U,

I32x4TruncSatF64x2SZero

SIMD
Instructions

I8x I8x16GtU, I8x16LtS
I16x I16x8GeS, I16x8GtU
I32x I32x4MinU, I32x4MaxS
I64x I64x2Sub, I64x2Mul
V128x V128Const, V128Load8x8S

Atomic Memory
Instructions

Memory AtomicFence, I32AtomicLoad
Read-Write-Modify I64AtomicRmwAdd

Compare and Exchange I32AtomicRmw8XchgU

6 Constants

6.1 Gas Metering-related

6.1.1 Storage-related

• BlockWritePerByteCost: 30.

• GetCodeDiscount: 50

• StorageHashComputePerNibbleCost: 55.

• StorageReadPerByteCost: 100.

• StorageRefundProportion: 50

• StorageTrieTraversePerNibbleCost: 10.

• StorageWritePerByteCost: 1,250.

CostStateSet

The first case in the cost formula corresponds to the creation of a new Storage tuple, the second case
to the updating of an existing Storage tuple, the third to the destruction of an existing Storage tuple,
and the fourth to a no-op:

CostStateSet(k, a, b) = Costget(k) +


[(k + b+W ) ∗X] + [2 ∗ k ∗ Y ] if a = 0, b > 0,

[b ∗X]− [Z ∗ a ∗X] + [2 ∗ k ∗ Y ] if a > 0, b > 0,

−[Z ∗ (k + b+W ) ∗X] + [2 ∗ k ∗ Y ] if a > 0, b = 0,

0 if a = 0, b = 0,

where k is the length of the key being set, a is the length of the old value (which could be 0), b
is the length of the new value, W is LeafNodeBaseLength, X is StorageWritePerByteCost, Y is
StorageHashComputePerNibbleCost+ StorageTrieTraversePerNibbleCost, and Z is StorageRefundProportion.

CostStateGet,Warmness[,Contract?]

CostStateGet,Cold(k, a) = a∗StorageReadPerByteCost+[2∗k∗StorageTrieTraversePerNibbleCost]

where k is the length of the key being got, and a is the length of the value that is gotten.

17



If the key has been get or set previously in the Transaction, execution, the cost is instead:

CostStateGet,Warm(k, a) = CostStateGet,Cold(k, a)×
1

5

If the get is for Contract code, the cost is instead:

CostStateGet,Warm,Contract(k, a) = CostStateGet,Cold(k, a)×
1

4

CostStateContains

CostStateContains,Cold(k) = CostStateGet,Cold(k, 0)

AccountStateKeyLength

33.

LeafNodeBaseLength

150.

ReceiptBaseSize

13.

TransactionBaseSize

160.

TransactionBaseCost(txn)

(13 + 160 + len(txn.command))×BlockWritePerByteCost+ 4×
CostStateRead,Cold(AccountStateKeyLength, 4) + 2×

CostStateRead,Warm(AccountStateKeyLength, 4) + 4×CostStateWrite(AccountStateKeyLength, 4, 4)

6.1.2 Computation

• Ed25519V erifyCost = 14.

• Keccak256PerByteCost = 16.

• LogicalOrPer64BitsCost: 1.

• Ripemd160PerByteCost = 16.

• Sha256PerByteCost = 16.

• WasmBytecodeCompilePerByteCost: 100.

• WasmMemoryWritePer64BitsCost: 3.

• WasmMemoryReadPer64BitsCost: 3.

CostInstantiate,V er,Warmness

CostInstantiate,0,Warm(l) = l ×WasmBytecodeCompilePerByteCost

CostInstantiate,0,Warm(l) = CostInstantiate,0,Cold(l)
1

5
×

18



6.2 Economics-related

• BlocksPerEpoch: 8,640 (1 epoch will take approximately one day).

• MaxStakesPerPool: 1024 (210).

• MaxV alidatorSetSize: 64 (26).

• SlashSize: 20%.

• StakeReleaseDelay: 2.

• TreasuryCutOfBaseFee: 20%.

Issuance

Issuance during Epoch n < 3650 is specified by the below formula:

Issuancen =
0.08× 0.85

n
365

and then drops to a constant Issuancen = 0.015
365 for n >= 3650

6.3 Workload Limits

• BlockSizeLimit: 2,097,152 (2 Megabytes).

• TargetBlockT ime: 10 seconds.

• TargetGasUsed: 35,000,000.

7 Protocol Evolution

A feature that makes public blockchains unique as compute and storage platforms are their communi-
ties’ commitment (or at least aspiration) to maintain their respective chains’ histories indefinitely. The
ParallelChain Mainnet shares these aspirations. As time goes on and as the problem domain evolves
and the contributors’ understanding of it improves, The Protocol will have to be updated. Some of
these updates (’major version updates’) change the Block format or the state transition function in
ways that prevent software implementing the previous version of the Protocol from accepting and/or
voting on new Blocks, while others (‘minor version updates’) do not. Major version updates and mi-
nor version updates correspond to ‘hard forks’ and ‘soft forks’ in the terminology popularized by the
Bitcoin and Ethereum communities.

Fullnode software must be able to execute any Block that is valid according to the rules specified by
an accepted version of The Protocol. After a new version of The Protocol gets accepted, the community
decides on a Block Height above which the new version of The Protocol will apply. Later, the once-new
version of The Protocol is in turn replaced by a newer version of The Protocol. This process maps
every version of The Protocol with a range of Block Heights. The end of the current version of The
Protocol’s range is defined after the next version of The Protocol is approved.

Version Number (major.minor) Version name CBI Version Starting Block Height

1.0 Adam 0 0

A Referenced HotStuff-rs Concepts

• The configuration variable target block time.

• The App trait and its two methods:

– propose block(ProposeBlockRequest) -> ProposeBlockResponse

19



– validate block(ValidateBlockRequest) -> ValidateBlockResponse

• and the relevant Request and Response structs:

– ProposeBlockRequest

∗ storage

∗ validator set

∗ proposer addr

∗ view number

∗ deadline

– ProposeBlockResponse

∗ data

∗ data hash

∗ storage updates

∗ validator set updates

– ValidateBlockRequest

∗ storage

∗ block

∗ validator set

∗ proposer addr

∗ view number

∗ deadline

– ValidateBlockResponse

∗ error

∗ storage updates

∗ validator set updates

• The hotstuff rs::Block type, which has fields:

– hash

– height

– justify

– data hash

– data

• The Vote variant of the ConsensusMsg enum type, which has fields:

– view number

– block hash

– phase

– signature

• The QuorumCertificate type.

20


	Introduction
	Relation with HotStuff-rs

	Message Types
	Cryptographic Primitives
	Block Header
	Block
	Transaction
	Transaction Command

	Receipt
	Receipt Exit Code
	Log


	World State
	Account
	Network Account Storage


	Transactions
	Common Phases
	Tentative Charge
	Charge

	Account Transactions
	Transfer
	Deploy
	Call

	Network Transactions
	Register Pool
	Modify Pool
	Release Pool
	Register Stake
	Release Stake
	Publish Evidence

	Next Epoch
	Binary Heap

	Contracts
	Host Functions
	Account State Accessors
	Block Field Getters
	Call Context Getters
	Internal Call Triggers
	Logging
	Cryptographic Operations

	Guest Functions
	Call Entrypoints
	Memory Allocation

	Opcode Gas Metering
	Disallowed Opcodes

	Constants
	Gas Metering-related
	Storage-related
	Computation

	Economics-related
	Workload Limits

	Protocol Evolution
	Referenced HotStuff-rs Concepts

